In 1980 J. Bourgain and F. Delbaen introduced a construction method, used to obtain L_∞-spaces not containing c_0. A large variety of L_∞-spaces has been constructed with this method, such as an example is the Argyros-Haydon space, the first Banach space satisfying the scalar-plus-compact property. Based on the aforementioned construction, we give a general definition of a Bourgain-Delbaen space and prove that every separable L_∞-space is isomorphic to such a space. We use this general approach to obtain Bourgain-Delbaen spaces as quotients of simpler Bourgain-Delbaen spaces. This is analogous to the use of an unconditional norming set as the frame for an HI construction. We also mention some recent examples of L_∞-spaces, such as an asymptotic c_0 L_∞-space not containing c_0 and a space with the scalar-plus-compact property having no reflexive subspaces.

This lecture is based on joint work with S. A. Argyros and I. Gasparis. (Received August 25, 2015)