Vizing’s Planar Graph Conjecture states that every planar graph of maximum degree at least 6 is class one. If for a surface \( \Sigma \), we define \( \Delta(\Sigma) = \max\{\Delta(G) | G \text{ is a connected class two graph of maximum degree } \Delta \text{ that is embedded in } \Sigma\} \), then one can claim that for a surface \( \Sigma \), any connected graph of maximum degree \( \Delta \) that is embedded in \( \Sigma \) is class one if \( \Delta > \Delta(\Sigma) \). Further, Vizing’s Planar Graph Conjecture also can be restated as \( \Delta(S) = 5 \) if \( S \) is a sphere. In this talk, we will focus on \( \Delta(\Sigma) \) and upper bounds for \( \Delta(\Sigma) \) for surfaces of characteristic \( \chi \leq 0 \). (Received December 08, 2016)