Let R be a commutative Noetherian ring and E the minimal injective cogenerator of the category of R-modules. An R-module M is (Matlis) reflexive if the natural evaluation map $M \to \text{Hom}_R(\text{Hom}_R(M, E), E)$ is an isomorphism. We prove that if S is a multiplicatively closed subset of R and M is an R_S-module which is reflexive as an R-module, then M is a reflexive R_S-module. The converse holds when S is the complement of the union of finitely many nonminimal primes of R, but fails in general. (Received January 17, 2017)