We consider the system constituted by a rigid body B having a hollow cavity which (strictly) contains a homogeneous rigid ball B_R. The gap between these rigid bodies is completely filled by a viscous incompressible fluid, whose motion is governed by the Navier-Stokes equations. We assume that the whole system S of rigid bodies with a fluid-filled gap is constrained to move (without friction) around the center, G, of the ball B_R. For a large class of configurations for the fluid and the solid B, we show that the long-time behavior of weak solutions corresponding to initial data having (arbitrary) finite kinetic energy is characterized by a steady state. In this steady state, S rotates as a whole rigid body with constant angular velocity. In particular, the velocities of the fluid relative to B and to B_R tend to zero as time approaches to infinity, respectively. (Received January 16, 2017)