The n-th ($n \geq 2$) model filiform algebra \mathfrak{f}^n is a $(n + 1)$ dimensional real Lie algebra. It has a basis e_1, \ldots, e_{n+1} with the only non-trivial bracket relations:

$$[e_1, e_j] = e_{j+1}, \quad 2 \leq j \leq n.$$

The connected and simply connected Lie group F^n with Lie algebra \mathfrak{f}^n is called the n-th model filiform group. The exponential map $\exp : \mathfrak{f}^n \to F^n$ is a diffeomorphism. We identify \mathfrak{f}^n and F^n via the exponential map. The standard dilation action of \mathbb{R} on $F^n = \mathfrak{f}^n$ is given by:

$$t \cdot (x_1e_1 + x_2e_2 + \sum_{j=2}^{n} x_{j+1}e_{j+1}) = e^t(x_1e_1 + x_2e_2) + \sum_{j=2}^{n} e^{jt}x_{j+1}e_{j+1}.$$

Let $S = F^n \rtimes \mathbb{R}$ be the associated semidirect product.

Theorem Let G be a connected and simply connected solvable Lie group. If G and S are quasiisometric, then they are isomorphic.

This is joint work with Tullia Dymarz. (Received January 05, 2015)