A frame in an n-dimensional Hilbert space H_n is a possibly redundant collection of vectors $\{f_i\}_{i \in I}$ that span the space. A tight frame is a generalization of an orthonormal basis. We define the factor poset of a frame $\{f_i\}_{i \in I}$ to be a collection of subsets of I ordered by inclusion so that nonempty $J \subseteq I$ is in the factor poset if and only if $\{f_j\}_{j \in J}$ is a tight frame for H_n. The inverse factor poset problem inquires when there exists a frame whose factor poset is some given poset P. We determine a necessary condition for solving the inverse factor poset problem in H_n which is shown to be sufficient for H_2. We address how factor poset structure is preserved under orthogonal projections. Furthermore, we discuss how many non-isomorphic factor posets are there for a fixed dimension n and number of vectors k and how large can these factor posets be. This is a joint work with Alice Chan, Martin Copenhaver, Logan Stokols and Allison Theobold. (Received January 16, 2015)