An approximate sparse recovery system consists of a matrix, Φ, and a recovery algorithm, R. Given a vector, x, the system approximates x from linear measurements Φx as $R(\Phi x)$, which must satisfy

$$\|R(\Phi x) - x\| \leq (1 + \varepsilon)\|x_{opt} - x\|,$$

where x_{opt} is the best possible k-term approximation to x. Among the figures of merit are the number of rows in Φ, the runtime of R, the choice of norms, and whether x can depend on (random) Φ. We survey results in this area up to recent work. (Received January 20, 2015)