Let (R, m) be a local ring, M a finitely generated module over R, and f_{1}, \ldots, f_{d} a system of parameters on M. Lech's limit formula states that as $\min _{i} t_{i} \rightarrow \infty$

$$
\frac{\ell\left(M /\left(f_{1}^{t_{1}}, \ldots, f_{d}^{t_{d}}\right) M\right)}{t_{1} \cdots t_{d}} \longrightarrow e\left(f_{1}, \ldots, f_{d} \mid M\right)
$$

the multiplicity of $\left(f_{1}, \ldots, f_{d}\right)$ on M. One may ask whether powers of a fixed sequence of parameters may be replaced by any sequence of parameter ideals I_{n} such that $I_{n} \subseteq m^{n}$. Recalling that the multiplicity may be realized as the alternating sum of the lengths of Koszul cohomology modules and that $H^{n}\left(f_{1}^{t_{1}}, \ldots, f_{d}^{t_{d}} \mid M\right) \cong M /\left(f_{1}^{t_{1}}, \ldots, f_{d}^{t_{d}}\right) M$, we rewrite Lech's limit formula as follows

$$
\frac{\sum_{j=0}^{n}(-1)^{n-j} \ell\left(H^{i}\left(f_{1}^{t_{1}}, \ldots, f_{d}^{t_{d}} ; M\right)\right)}{\ell\left(H^{n}\left(f_{1}^{t_{1}}, \ldots, f_{d}^{t_{d}}\right)\right)} \longrightarrow 1 .
$$

From this point of view, it is also natural to ask in the case when $\operatorname{dim} M=\operatorname{dim} R=d$ for which $i<d$ we have $\ell\left(H^{i}\left(I_{n} ; M\right)\right) / \ell\left(R / I_{n} R\right) \rightarrow 0$. The main result is that when M is faithful, the M satisfying the condition that $\ell\left(H^{i}\left(I_{n} ; M\right)\right) / \ell\left(R / I_{n} R\right) \rightarrow 0$ for all $i<d$ and all parameter $I_{n} \subseteq m^{n}$ are exactly those M that are locally CohenMacaulay. (Received February 26, 2017)

