Let R be a commutative, Noetherian, local ring and M a finitely generated R-module. Consider the module of homomorphisms $\text{Hom}_R(R/a, M/bM)$ where $b \subseteq a$ are parameter ideals of M. When $M = R$ and R is Cohen-Macaulay, Rees showed that this module of homomorphisms is always isomorphic to R/a. Recently, K. Bahmanpour and R. Naghipour showed that if $\text{Hom}_R(R/a, R/b)$ is isomorphic to R/a for every pair of parameter ideals $b \subseteq a$ then R is Cohen-Macaulay. In this talk, we will discuss the structure of $\text{Hom}_R(R/a, M/bM)$ for general M, focusing on the case when $M = R$ and R is a quotient of a power series ring. (Received February 08, 2017)