Jarosław Buczyński, Kangjin Han, Massimiliano Mella and Zach Teitler*
(zteitler@member.ams.org). Geometry of high rank loci.

General $m \times n$ matrices have rank $\min\{m, n\}$, which is also the maximum possible rank. The loci of matrices of lower rank are well-studied. For more general notions of rank, such as tensor rank and Waring rank, once again loci of low rank points are well-known, namely, they are secant varieties. But high rank loci are almost completely mysterious.

We consider the loci of points with strictly greater than generic rank with respect to a projective variety X. This includes well-known notions of rank, such as tensor rank (when X is a Segre variety) and Waring rank (when X is a Veronese variety). We show nesting results, dimension bounds, and containment and non-containment results for high rank loci with respect to arbitrary varieties X. We improve upper bounds for rank with respect to any curve or homogeneous variety. In the case of Waring rank, we show that the locus of n-ary forms of maximal Waring rank has dimension at least $\binom{n+1}{2} - 1$. This is joint work with Jarosław Buczyński, Kangjin Han, and Massimiliano Mella. (Received February 04, 2017)