Jillian Louise Glassett* (jglassett@math.wsu.edu), jglassett@math.wsu.edu, and Judith McDonald. Spectrally Arbitrary Zero-Nonzero Patterns over Rings with Unity. A zero-nonzero matrix pattern \mathcal{A} is a square matrix with entries $\{0, *\}$. A $n \times n$ pattern \mathcal{A} is spectrally arbitrary over a ring \mathcal{R} if for each n-th degree monic polynomial $f(x) \in \mathcal{R}[x]$, there exist a matrix A over \mathcal{R} with pattern \mathcal{A} such that the characteristic polynomial $p_A(x) = f(x)$. A $n \times n$ pattern \mathcal{A} is relaxed spectrally arbitrary over \mathcal{R} if for each n-th degree monic polynomial $f(x) \in \mathcal{R}[x]$, there exist a matrix A over \mathcal{R} with either pattern \mathcal{A} or a subpattern of \mathcal{A} such that the characteristic polynomial $p_A(x) = f(x)$. We consider whether a pattern \mathcal{A} that is spectrally arbitrary over a ring \mathcal{R} is spectrally arbitrary over \mathbb{Z} is relaxed spectrally arbitrary over \mathbb{Z} . In particular, we discovered that a pattern that is spectrally arbitrary over \mathbb{Z} is relaxed spectrally arbitrary over \mathbb{Z}_m for all m. We also determined the minimum number of * entries to be spectrally arbitrary over \mathbb{Z} . (Received February 22, 2017)