Let k be a field of characteristic zero, $D = D(\alpha, \beta)$ be a noetherian down-up algebra that is graded by a finite group G, and $H = \text{Hom}_k(kG, k)$ be the k-linear dual of the group algebra kG. The fixed subring D^H under the Hopf algebra H can be identified with the identity component D_e under the G-grading. We prove that D is rigid in the sense that D^H is never AS regular (so D^H is not isomorphic to D), and hence each D has no dual reflection group. Further, we prove that when the homological determinant of the H-action on D is trivial and H acts homogeneously on D, Auslander’s Theorem holds: the smash product $D \# H$ is naturally isomorphic to $\text{End}_{D^H}(D)$, as k-algebras. (Received February 27, 2017)