It is known that as x increases, that x^x eventually exceeds $x!$ without bound. It is also know that as x increases, $x!$ eventually exceeds a^x without bound, for any positive fixed value of a. However, it is much more difficult to compare the growth rates of $(ax)!$ and x^x. We will examine this problem and show that in the case where a is greater than one, that $(ax)!$ exceeds x^x without bound. (Received February 28, 2017)