Yunfeng Hu (yunfeng.hu@wsu.edu), Department of Mathematics and Statistics, Washington State University, PO Box 643113, Pullman, WA 99163, and Enrique Alvarado* (ealvarado@math.wsu.edu), Enrique Alvarado, pullman, WA 99163. On the Measure of a Cantor Set Packing in \mathbb{R}.

Let T be a subset of \mathbb{R}^n, and let S and B be two subsets in \mathbb{R}^n such that for any x in S, there exists an $r > 0$ for which $x + rT$ is a subset of B. How small (in measure) can B be if we know the size of S?

Stein proved that if n is greater than or equal to 3 and T is a sphere centered at origin, then S having positive measure implies that B has positive measure. He showed this by using the spherical maximal operator. Later, Bourgain and Marstrand independently proved the result for $n = 2$.

However if $n = 1$ then the result is not true. We will show this by constructing a counterexample that involves the 1/3-Cantor set. (Received February 09, 2017)