1128-55-38 Hongwei Wang* (hongwei.wang@ttu.edu), Hongwei Wang, 1612 Ave Y, apt 116B, Lubbock, TX 79401, and Razvan Gelca. Find the action of Kauffman bracket skein algebra on the skein module of the 3-twist knot complement. Preliminary report.
Kauffman bracket skein module of a 3-manifold was introduced by Jozef H. Przytycki. My research is focused on the action of Kauffman bracket skein algebra on the skein module of the 3-twist knot complement. This is a continued work of Razvan and Nagsado's work [R.Gelca and F.Nagasato,Knot theory and its application].We consider the manifold $M=S^{3} \backslash K$, where K is a 3-twist knot. We know [Bullock and Lo faro, The Kauffman bracket skein module of a twist knot exterior $] K_{t}\left(S^{3} \backslash K\right)$ is free $C\left[t, t^{-1}\right]$-module with basis $x^{k} y^{j}, k$ is arbitrary interger and j is $0,1,2,3$, where $C\left[t, t^{-1}\right]$ is the ring of Laurent polynomials. We use the basis with chebyshev polynomials of second kind $S_{n}(x)$.Take the map $\pi: K_{t}\left(\pi^{2} \times I\right) \rightarrow K_{t}\left(S^{3} \backslash K\right)$. For a pair of integers (p, q), we denote by $(p, q)_{T}$ the element of the Kauffman bracket skein module of the 3 -twist knot complement.Take the case where $\operatorname{gcd}(p, q)=1$. This is the curve whose homology class in the base (longitude, meridian) is (p, q).We considered curve $(1,-2)$ and $(1,-3)$ firstly. Eventually, we expect to find the action on knot complement with an arbitrary curve using the basis with chebyshev polynomials of second kind. (Received February 01, 2017)

