1128-65-127 Yves Nievergelt* (ynievergelt@ewu.edu), Eastern Washington University, Department of Mathematics, 216 Kingston Hall, Cheney, WA 99004. Binary Floating-Point Subtraction of a Floating-Point Square Accurate to the Antepenultimate Digit by Deflation Without Fused Multiply-Subtract or Fused Multiply-Add.
Differences of the form $r^{2}-s$ occur, for instance, in Newton's Method to compute \sqrt{s}, and in the calculation of the discriminant of a monic quadratic polynomial $x^{2}+2 r x+s$. To compute $r^{2}-s$ accurately to the antepenultimate digit on computing systems lacking fused multiply-add and fused multiply-subtract, an algorithm is presented here that produces floating-point numbers \hat{r} and \hat{s} with smaller magnitudes and more trailing zeroes such that $\hat{r}^{2}-\hat{s}=r^{2}-s$. The algorithm may be iterated or its first result (\hat{r}, \hat{s}) delivered to W. Kahan's DISC algorithm to compute $\operatorname{DISC}(1, \hat{r}, \hat{s})=\hat{r}^{2}-\hat{s} \cdot 1$ (www.dtic.mil/dtic/tr/fulltext/u2/a206859.pdf). While DISC bases the size of each reduction on r, the algorithm presented here uses s. (Received February 21, 2017)

