For a commutative ring S, a quasigroup Q is said to be S-linear if Q has an S-module structure, with $x \cdot y = x^R + y^L$ for S-automorphisms R and L of Q. By definition, homomorphisms of S-linear quasigroups are module homomorphisms that respect the quasigroup structure.

Our primary concern is the isomorphism problem for finitely generated \mathbb{Z}-linear quasigroups. While finite-dimensional \mathbb{C}-linear quasigroups are classified up to isomorphism by ordinary characters, non-isomorphic finitely generated \mathbb{Z}-linear quasigroups may complexify to isomorphic \mathbb{C}-linear quasigroups. We present a subclass of \mathbb{Z}-linear quasigroups where isomorphic complexifications imply a permutational similarity of the \mathbb{Z}-linear quasigroups involved. (Received August 08, 2016)