To every directed graph E one can associate a graph inverse semigroup $G(E)$, where elements roughly correspond to possible paths in E. These semigroups generalize polycyclic monoids, and they arise in the study of various rings and C^*-algebras. We investigate topologies that turn $G(E)$ into a topological semigroup. For instance, we show that in any such topology that is Hausdorff, $G(E) \setminus \{0\}$ must be discrete for any directed graph E. On the other hand, $G(E)$ need not be discrete in a Hausdorff semigroup topology, and for certain graphs E, $G(E)$ admits a T_1 semigroup topology in which $G(E) \setminus \{0\}$ is not discrete. We also describe, in various situations, the algebraic structure and possible cardinality of the closure of $G(E)$ in larger topological semigroups. (Received July 05, 2016)