Given an $n \times n$ random matrix with independent and identically distributed (iid) entries, the well known Circular Law describes the limiting distribution of the eigenvalues as n tends to infinity. More generally, given the product of m independent iid matrices, the limiting distribution of the eigenvalues is the mth power of the Circular Law. In this talk, I will discuss what happens when the product is perturbed by a low-rank deterministic matrix. While the limiting distribution remains the same, the deterministic perturbation can create a number of outlying eigenvalues, and I will describe the asymptotic location of these outliers. (Received July 29, 2016)