Tyler Kloefkorn* (tkloefkorn@math.arizona.edu). Weakly Cohen-Macaulay posets and a class of finite-dimensional Koszul algebras.

Given a finite ranked poset Γ, we study an associated finite-dimensional graded quadratic algebra, R_{Γ}. Assuming Γ satisfies a combinatorial condition known as uniform, R_{Γ} is related to a well-known algebra, the splitting algebra A_{Γ}. Splitting algebras were first introduced by Gelfand, Retakh, Serconek, and Wilson, and they originated from the problem of factoring non-commuting polynomials. We ask: Is R_{Γ} Koszul? The Koszulity of R_{Γ} is related to the Cohen-Macaulay property of Γ. Kloefkorn and Shelton proved that if Γ is a finite ranked cyclic poset, then Γ is Cohen-Macaulay if and only if Γ is uniform and R_{Γ} is Koszul. We define a new generalization of Cohen-Macaulay, weakly Cohen-Macaulay. We prove: if Γ is a finite ranked cyclic poset, then Γ is weakly Cohen-Macaulay if and only if R_{Γ} is Koszul. (Received July 19, 2016)