Let X be a non-singular projective hypersurface of degree d and dimension n. When $n+2$ is a multiple of d, say $n+2 = (r+1)d$, the first non-vanishing hodge number in dimension n is $h^{r,n-r} = 1$. If we work over the finite field of q elements, and write $Z(X,T)$ for the zeta function of X, it is known that $(Z(X,T) \prod_{i=0}^{n}(1-q^iT))^{(-1)^{n+1}}$ is a polynomial for general X with a (distinguished) unique reciprocal root u_X satisfying $\text{ord}_q(u_X) = r$. In this work, we describe a formula for this unique reciprocal zero in terms of a distinguished p-adic solution to a particular A-hypergeometric system. (Received August 22, 2016)