In 1944, L.D. Landau first discovered explicit (-1)-homogeneous solutions of 3-d stationary incompressible Navier-Stokes equations (NSE) with precisely one singularity at the origin. These solutions, now called Landau solutions, are axisymmetric with no swirl. In 1998 G. Tian and Z. Xin proved that all solutions which are (-1) homogeneous, axisymmetric with one singularity are Landau solutions. In 2006 V. Sverak proved that Landau solutions are the only (-1)-homogeneous solutions with one singularity. Our work focuses on the (-1)-homogeneous solutions of 3-d incompressible stationary NSE with finite singularities on the unit sphere. In this talk we will first classify all (-1)-homogeneous axisymmetric no-swirl solutions of 3-d stationary incompressible NSE with one singularity at the south pole on the unit sphere as a 2-d solution surface. We will then present our results on the existence of a one parameter family of (-1)-homogeneous axisymmetric solutions with non-zero swirl emanating from the 2-d surface of axisymmetric no-swirl solutions. We will also present asymptotic behavior of general (-1)-homogeneous axisymmetric solutions in a cone containing the south pole with a singularity at the south pole on the unit sphere. (Received August 28, 2016)