A Hamilton 1-cycle in a k-uniform hypergraph of n-vertex is an ordering of all vertices, combined with an ordered subset C of edges, such that any two consecutive edges share exactly 1 vertices and each edge in C contains k consecutive vertices. A classic result of O. Ore in 1960 is that if the degree sum of any two independent vertices in an n-vertex graph is at least n, then the graph contains a Hamiltonian cycle. Naturally, we consider to generalize it to hypergraphs situation. In this paper, we prove the following theorems. (i) for any \(n \geq 4k^2 \), there is an n-vertex k-uniform hypergraph, with degree sum of any two strongly independent sets of k1 vertices bigger than 2n4(k1), contains no Hamilton 1-cycle, 1 \(\leq l \leq k1 \). (ii) if the degree sum of two weakly independent sets of k1 vertices in an n-vertex k-uniform hypergraph is \((1 + o(1))n \), then the hypergraph contains a Hamilton (k1)-cycle, where two distinct sets of k1 vertices are weakly (strongly) independent if there exist no edge containing the union of them (intersecting both of them). (Received July 22, 2017)