The Erdős–Gallai states that every n-vertex graph with more than $\frac{1}{2}(k-1)(n-1)$ edges has a cycle of length k or longer. Kopylov proved a refinement of the theorem: if G is a 2-connected graph with more than $\max\{\binom{k-2}{2} + 2(n - k + 2), (\frac{k-1}{2}) + \lfloor (k-1)/2 \rfloor (n - k + \lfloor (k-1)/2 \rfloor)\}$ edges, then G contains a cycle of length k or longer. Two sharpness examples $H_{n,k,2}$ and $H_{n,k,\lfloor (k-1)/2 \rfloor}$ are provided. In this talk, we present a stability version of Kopylov’s theorem for dense 2-connected graphs with circumference less than k. We also present a generalization of the theorem, that is, we show a sharp upper bound for the number of cliques in such graphs. (Received July 24, 2017)