Let \( \zeta \) be an \( n \)th root of unity, and \( F \) be a finite type oriented surface. The Kauffman bracket skein algebra \( K_\zeta(F) \) is an algebra over the complex numbers with basis the simple diagrams on \( F \) and multiplication given by stacking and resolving crossings using the Kauffman bracket skein relations. We prove a conjecture of Bonahon and Wong about irreducible representations of \( K_\zeta(F) \).

An irreducible representation \( \rho : K_\zeta(F) \to M_N(\mathbb{C}) \) is a surjective homomorphism to a matrix algebra. We prove generically, the irreducible representations of \( K_\zeta(F) \) are determined by their central characters, and those generic representations all have the same dimension, which is the rank of \( K_\zeta(F) \) as a module over its center.

The heart of the proof is a unicity theorem for representations of a prime algebra over an algebraically closed field, that has finite rank over its center. (Received May 01, 2017)