Suppose a continuous map $\vec{f}: \mathbb{R}^n \rightarrow \mathbb{R}^q$ has a level set with an isolated point, and that there is no topological obstruction to removing the isolated point by a small perturbation \vec{g} near \vec{f}. An example is a vector field $\vec{f}: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ with an isolated zero of index zero. We consider the problems of constructing such a \vec{g}, and a homotopy from \vec{f} to \vec{g}, in cases where \vec{f} is semialgebraic, real analytic, or polynomial. For $q = 2$, we use complex variable and PDE methods to establish existence and regularity. (Received July 22, 2017)