Let k be a field, A an \mathbb{N}-graded k-algebra, and G be a group of graded automorphisms of A. Auslander proved that in case A is the commutative polynomial ring, the skew group ring $A\#G$ is isomorphic to the ring of A^G-linear endomorphisms of A if and only if G does not contain a nontrivial pseudo-reflection.

Recent work of Bao, He and Zhang have couched the existence of such an isomorphism for a general graded algebra in terms of the pertinency of the group action, which is the difference in Gelfand-Kirillov dimensions of $A\#G$ and $(A\#G)/\langle f \rangle$ where f is the Reynolds idempotent. In this preliminary report, we provide some new computations of this invariant when A is the (-1)-skew polynomial ring in n variables, and S_n acts as permutations of A, the details of which use commutative algebra in an interesting way. (Received September 13, 2016)