We consider steady state reaction diffusion equations on the exterior of a ball, namely, boundary value problems of the form:

\[
\begin{aligned}
-\Delta_p u &= \lambda K(|x|)f(u) \quad \text{in } \Omega_E, \\
Bu &= 0 \quad \text{on } |x| = r_0, \\
u &\to 0 \quad \text{when } |x| \to \infty,
\end{aligned}
\]

where \(\Delta_p z := \text{div}(|\nabla z|^{p-2}\nabla z)\), \(1 < p < n\), \(\lambda > 0\), \(\Omega_E := \{x \in \mathbb{R}^n \mid |x| > r_0 > 0\}\) and \(B\) is either \(Bu \equiv u\) or \(Bu \equiv \frac{\partial u}{\partial y} + c(u)u\) where \(c \in C((0, \infty), (0, \infty))\) and \(\frac{\partial u}{\partial y}\) is the outward normal derivative of \(u\) on \(|x| = r_0\). Here the weight function \(K \in C^1([r_0, \infty), (0, \infty))\) satisfies \(\lim_{r \to \infty} K(r) = 0\), and the reaction term \(f \in C^1([0, \infty))\) is strictly increasing and satisfies \(f(0) < 0\), \(\lim_{s \to \infty} f(s) = \infty\), \(\lim_{s \to \infty} \frac{f(s)}{s^{p-1}} = 0\) and \(\frac{f(s)}{s^q}\) is nonincreasing on \([a, \infty)\) for some \(a > 0\) and \(q \in (0, p-1)\). We establish uniqueness results for positive radial solutions for \(\lambda \gg 1\). (Received September 12, 2016)