In this work we provide conditions for the existence of solutions to nonlinear, discrete Sturm–Liouville problems of the form
\[ \Delta(p(t-1)\Delta x(t-1)) + q(t)x(t) + \lambda x(t) = f(x(t)); \quad t \in \{a+1, \cdots, b+1\} \]
subject to
\[ a_{11}x(a) + a_{12}\Delta x(a) = 0 \text{ and } a_{21}x(b+1) + a_{22}\Delta x(b+1) = 0. \]

The parameter \( \lambda \) will be assumed to be an eigenvalue of the associated linear Sturm–Liouville boundary value problem. Our results generalize those found in the existing literature. (Received September 01, 2016)