Enumeration reducibility is a reducibility from classical recursion theory. The Turing degrees embed in the enumeration degrees, and it has recently been shown that these embedded degrees, known as total degrees, are definable in the degree structure. This has brought increased attention to the enumeration degrees, and especially to the way the total degrees sit inside them.

The continuous degrees are a substructure of the enumeration degrees, strictly containing the total degrees, introduced by Joe Miller in 2004. It was recently observed that even non-total continuous degrees are almost total: They become total if any additional total information is added.

We investigate the question of whether every almost total degree is continuous. A yes answer would provide a definition of the continuous degrees within the enumeration degrees, which would allow many results about continuous degrees to translate into definability results. We provide a partial result, using certain uniformity assumptions. We also discuss several other combinatorial properties that are relevant to the question, producing a chain of implications with at least one strict nonimplication somewhere in the chain. (Received March 21, 2017)