Consider a self mapping T defined on the union of three subsets $A; B$ and C of a metric space; T is to be called a tricyclic mapping if it satisfies $T:A \rightarrow B; T:B \rightarrow C$ and $T:C \rightarrow A$; in this work; we give a contraction type existence theorem for a best proximity point; as well as a new boundedness result. We first define the best proximity point of a tricyclic mapping and give a simple algorithm to find it. Next, we extend our result to convex metric spaces and CAT(k) spaces, the notion of tricyclic contractions is firstly introduced in our work. (Received July 01, 2017)