The slow-coloring game on a graph G is played by two players, Lister and Painter, according to the following rules. All vertices are initially uncolored. Each turn, Lister marks a subset M of uncolored vertices, scores $|M|$ points, and presents the subset to Painter. Painter then gives a color to an independent subset of M. The game continues until all vertices are colored. Lister wishes to maximize his total score, while Painter wishes to minimize it. The sum-color cost of G, written $\bar{s}(G)$, is the score achieved by Lister when both players play optimally.

We give an inductive formula for $\bar{s}(G)$ when G is a tree, and we discuss the relationship between the sum-color cost of trees and the interactive sum choice number of trees, a parameter recently introduced by Bonamy and Meeks. (Received July 25, 2017)