Two \(n \)-vertex graphs \(G_1 \) and \(G_2 \) pack if there exist injective mappings of their vertex sets into \([n]\), such that the images of the edge sets are disjoint. In the 1970s, Bollobás and Eldridge, and independently Catlin, conjectured that if \((\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1\), then \(G_1 \) and \(G_2 \) pack, where \(\Delta_1, \Delta_2 \) are the maximum degrees of \(G_1, G_2 \), respectively. Towards this conjecture, we show that for each integer \(k \geq 2 \), if neither of \(G_1, G_2 \) contains a 4-cycle nor an even cycle with length between \(2k \) and \(4k \), and \(n > \max\{\Delta_1\Delta_2 + 0.5(\Delta_1 + \Delta_2), (3k - 4.5)(\Delta_1^{1+\frac{1}{k}} + \Delta_2^{1+\frac{1}{k}}) + (6k - 5)(\Delta_1 + \Delta_2)\} \), then \(G_1 \) and \(G_2 \) pack. As a corollary, the BEC conjecture is true for graphs without 4-, 6-, 8-cycles and \(\Delta_i \geq 330, i = 1, 2 \), which slightly improves a result by Batenburg and Kang. (Received August 01, 2017)