Given a Galois cover of curves $X \to Y$ with Galois group G which is totally ramified at a point x and unramified elsewhere, restriction to the punctured formal neighborhood of x induces a Galois extension of Laurent series rings $k((u))/k((t))$. If we fix a base curve Y, we can ask when a Galois extension of Laurent series rings comes from a global cover of Y in this way. Harbater proved that over a separably closed field, this local-to-global principle holds for any base curve if G is a p-group, and gave a condition for the uniqueness of such an extension. Using a generalization of Artin-Schreier theory to non-abelian p-groups, we characterize the curves Y for which this lifting property holds and when it is unique, but over a more general ground field. (Received July 25, 2017)