Lucja Farnik, Francesco Galuppi, Luca Sodomaco and Bill Trok*

(William.trok@uky.edu). Combinatorics and Unexpected Curves in the Projective Plane. Preliminary report.

Let $I(Z)$ be the ideal of a collection of points Z contained in \mathbb{P}^2, the projective plane. We say that Z has an unexpected curve of degree d if for a general point $Q \in \mathbb{P}^2$, and some integer m, the dimension of the ideal $I(Z) \cap I(Q)^m$ in degree d is not the expected dimension, that is $\dim[I(Z) \cap I(Q)^m]_d > \max\{0, \dim[I(Z)]_d - \binom{m+1}{2}\}$. We discuss some ongoing work involving the structure of the collections of points Z which admit unexpected curves. We’ll mention why we expect high amounts of symmetry of the points in Z, with special attention paid to the case where Z consists of 9 points. Additionally, we’ll look at a new technique for proving a given configuration admits an unexpected curve. (Received July 31, 2017)