We present a full classification of the short-time behavior of the interfaces and local solutions to the nonlinear parabolic p-Laplacian type reaction-diffusion equation of non-Newtonian elastic filtration

$$u_t - \left(|u_x|^{p-2}u_x\right)_x + bu^\beta = 0, \quad p > 1, \beta > 0$$

The interface may expand, shrink, or remain stationary as a result of the competition of the diffusion and reaction terms near the interface, expressed in terms of the parameters $p, \beta, \text{sign } b$, and asymptotic of the initial function near its support. In all cases, we prove the explicit formula for the interface and the local solution with accuracy up to constant coefficients. The methods of the proof are based on nonlinear scaling laws, and a barrier technique using special comparison theorems in irregular domains with characteristic boundary curves. The results are published in *European Journal of Applied Mathematics, Volume 28, 5(2017)*. (Received July 25, 2017)