We will see that vectors in \mathbb{C}^n have natural analogs as rank 2 projections in \mathbb{R}^{2n} and that this association transfers many vector properties into properties of rank two projections. We believe that this association will answer many open problems in \mathbb{C}^n where the corresponding problem in \mathbb{R}^n has already been answered - and vice versa. As a application, we will see that phase retrieval in \mathbb{C}^n transfers to a variation of phase retrieval by rank 2 projections on \mathbb{R}^{2n}. As a consequence, we will answer the open problem: Give the complex version of Edidin’s Theorem which classifies when projections do phase retrieval in \mathbb{R}^n. As another application we answer a longstanding open problem concerning fusion frames by showing that fusion frames in \mathbb{C}^n associate with fusion frames in \mathbb{R}^{2n} with twice the dimension and the same fusion frame bounds. As another application, we will show that a family of mutually unbiased bases in \mathbb{C}^n has a natural analog as a family of mutually unbiased rank 2 projections in \mathbb{R}^{2n}. We will also show that equiangular tight frames in \mathbb{C}^n have an analog as equiangular tight families of rank 2 projections in \mathbb{R}^{2n}. (Received June 29, 2017)