Let K be a convex and symmetric bounded set in \mathbb{R}^d, $d \geq 2$, with smooth boundary. Using a combinatorial approach, we show that for $d \neq 1 \text{ (mod } 4)$, the indicator function of K cannot serve as an orthogonal Gabor window function for $L^2(\mathbb{R}^d)$. That means that there is no countable set $S \subset \mathbb{R}^{2d}$ such that the Gabor family $\mathcal{G}(1_K, S) = \{e^{2\pi i x \cdot b} 1_K(x - a) : (a, b) \in S\}$ is an orthogonal basis for $L^2(\mathbb{R}^d)$.

This is joint work with Alex Iosevich. (Received February 04, 2018)