The Periodicity theorem tells us that any finite spectrum supports a v_n-map for some n. We are interested in finding finite 2-local spectra that both support a v_2-map with a low power of v_2 and have few cells. Following the process outlined by Palmieri and Sadofsky, we study a related class of self-maps, known as u_2-maps, between stably finite spectra. We construct examples of spectra that might be expected to support u_2^1-maps, and then we use Margolis homology and homological algebra computations to show that they do not support u_2^1-maps. We also show that one example does not support a u_2^2-map. The nonexistence of u_2-maps on these spectra eliminates certain examples from consideration by this technique. (Received February 05, 2018)