One major difference between complex analysis in one and several variables is the lack of a true analogue to the one-variable Cauchy transform, C. By looking at domains satisfying a convexity condition, however, we are able to construct the Leray transform, L, an operator which shares many familiar properties with C. A significant amount of recent work has been done to study the mapping properties of L in various settings. I will focus on a family of model domains in \mathbb{C}^2, and discuss new techniques used in the analysis of the Leray operator. These models can be used to locally approximate a very general class of domains, and it is expected that the theorems in the model case will carry over to the general case. I will also discuss what these results mean in terms of dual CR structures on hypersurfaces in projective space. This is joint work with Dave Barrett. (Received January 21, 2018)