Let R be a regular semilocal Dedekind domain containing $1/2$ with fraction field K, and (A, τ) an R-Azumaya algebra with involution of the first or second kind. By second kind we mean that R is a quadratic Galois extension of the fix ring of the involution τ. For $\epsilon \in \{\pm 1\}$ there is a exact complex of ϵ-hermitian Witt groups

$$0 \to W_\epsilon(A, \tau) \to W_\epsilon(A_K, \tau_K) \to \bigoplus_{ht P = 1, \tau(P) = P} W_\epsilon(A_{k(P)}, \tau_{k(P)}) \to 0$$

where $k(P)$ is the residue field at the prime P of R, and where we have set $(A_{k(P)}, \tau_{k(P)}) := k(P) \otimes_R (A, \tau)$ and $(A_K, \tau_K) := K \otimes_R (A, \tau)$.

This complex is split exact if R is a DVR and τ of the first kind. As a corollary it implies purity for the hermitian Gersten-Witt complex of an Azumaya algebra with involution over a regular semilocal ring R of dimension two. (Received November 04, 2018)