Kazuhiko Kurano*, School of Science and Technology, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan. Rationality of the negative curve and finite generation of symbolic Rees rings.
Let K be a field. Let a, b, c be pairwise coprime positive integers such that $\sqrt{a b c} \notin \mathbb{N}$. Let X be the weighted projective space $\operatorname{Proj}(K[x, y, z])$ with $\operatorname{deg}(x)=a, \operatorname{deg}(y)=b, \operatorname{deg}(z)=c$, respectively. Let $f: Y \rightarrow X$ be the blow-up at the smooth point defined by the kernel P of the K-algebra map $K[x, y, z] \rightarrow K[T]$ defined by $x \mapsto T^{a}, y \mapsto T^{b}, z \mapsto T^{c}$. Let E be the exceptional divisor. If the symbolic Rees ring $R_{s}(P)$ (equivalently, the Cox ring of Y) is Noetherian, there exists a curve $C(\neq E)$ such that $C^{2}<0$.

In this talk, we give some sufficient condition for the negative curve to be rational. All examples (that I know) of negative curves satisfy this condition. Therefore, I do not know any examples of non-rational negative curves.

Assume that there exists a negative curve C. Then $R_{s}(P)$ is Noetherian if and only if there exists a curve D on Y such that $C \cap D=\emptyset$. (The defining equations of C and D satisfy the Huneke's criterion for finite generation.) In the case where C is rational, it is possible to estimate the degree of $f(D)$. Using computers, it is possible to determine whether $R_{s}(P)$ is Noetherian in some cases. (Received January 19, 2019)

