A branched covering \(f: \mathbb{R}^n \to \mathbb{R}^n \) is an open and discrete map. Branched coverings are topological generalizations of quasiregular and holomorphic mappings. The branch set of \(f \) is the set where \(f \) fails to be locally injective. It is well known that the image of the branch set of a PL branched covering between PL \(n \)-manifolds is a simplicial \((n-2)\)-complex. I will discuss a recent result that the reverse implication also holds. More precisely, a branched covering with the image of the branch set contained in a simplicial \((n-2)\)-complex is equivalent up to homeomorphism to a PL mapping. This result is classical for \(n = 2 \) and was shown by Martio and Srebro for \(n = 3 \). This is joint work with Rami Luisto. (Received January 29, 2019)