A virtual knot with virtual unknotting number one and \(n \)-writhes.

Satoh and Taniguchi introduced the \(n \)-th writhe \(J_n \) for each non-zero integer \(n \), which is an invariant for virtual knots. The \(n \)-writhes give the coefficients of a lot of polynomial invariants for virtual knots including the index polynomial, the odd writhe polynomial and the affine index polynomial. The virtualization of a real crossing is an unknotting operation for virtual knots. Relationship between some local moves and the \(n \)-writhes is known. However relationship between a virtualization and the \(n \)-writhes has not been clarified. In this talk, we show that for any given non-zero integers \(n \) and \(N \), there exist a virtual knot whose virtual unknotting number is one and \(n \)-writhe is \(N \). As a result, we can see that all the polynomial invariants whose coefficients are \(n \)-writhes cannot evaluate the distance for virtual knots by virtualizations. (Received January 28, 2019)