Peter Dankelmann* (pdankelmann@uj.ac.za), Department of Pure and Applied Mathematics, University of Johannesburg, Johannesburg, 2006, South Africa. Steiner k-Wiener index and minimum degree.

The Wiener index of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The Steiner distance of a set S of vertices of a connected graph G is the minimum size of a connected subgraph of G containing the vertices of S. The Steiner distance generalises the notion of distance in graphs to more than two vertices.

The Steiner k-Wiener index combines these two notions. For $k \in \mathbb{N}$, the Steiner k-Wiener index of a graph G is defined as the sum of the Steiner distances of all k-subsets of the vertex set of G. The Steiner 2-Wiener index is the Wiener index.

It is known that for $n,k \in \mathbb{N}$ with $2 \leq k \leq n$, the Steiner k-Wiener index of a connected graph of order n cannot exceed $\frac{(k-1)(n+1)}{k+1} \binom{n}{k}$, with equality holding for paths. In our talk we show that for graphs of minimum degree δ this bound can be improved by a factor of approximately $\frac{3}{\delta+1}$, and this is best possible. (Received February 11, 2018)