A signed graph \((G, \sigma)\) is a graph \(G\) together with a sign \(\sigma : E(G) \rightarrow \{\pm 1\}\). An edge is positive if it is assigned with 1 and otherwise it is negative. In 1983, Bouchet generalized the concept of integer flows to signed graphs and conjectured that every flow-admissible signed graph admits a nowhere-zero 6-flow. Let \(G\) be a graph embedded on a nonorientable surface \(\Sigma\). Denote by \(\sigma_{\Sigma}\) an induced sign of \(G\) from its embedding on \(\Sigma\), where an edge is negative if and only if it passes through a crosscap. It is well known that every graph embedded on the projective plane or Klein bottle is 6-colorable. By the coloring-flow duality, every such graph satisfies Bouchet’s 6-flow conjecture. In this talk, more results and open problems regarding flows on embedded graphs will be presented and investigated. (Received February 12, 2018)