A classical result of Erdős-Pósa states that the maximum number of disjoint cycles in a graph and the minimum number of vertices that are required to hit all cycles in the same graph are bounded by functions of each other. In other words, the set of cycles has the Erdős-Pósa property. Robertson and Seymour proved a far generalization of Erdős-Pósa’s theorem in terms of graph minors: the set of graphs containing H as a minor has the Erdős-Pósa property if and only if H is a planar graph. Thomas conjectured that the planarity of H can be dropped if half-integral packing is allowed. The main result of this talk is that the set of H-topological minors has the half-integral Erdős-Pósa property for any graph H, which easily implies Thomas’ conjecture. Namely, we proved that for every graph H, there exists a function f such that for every graph G, either G contains k H-topological minors where each vertex of G is contained in at most two of them, or there exists a set of vertices of G of size at most $f(k)$ hitting all H-topological minors. (Received July 20, 2018)