1141-05-126 Michael Tait* (mtait@cmu.edu). The Zarankiewicz problem in 3-partite graphs.
Let F be a graph, $k \geq 2$ be an integer, and write $\operatorname{ex}_{\chi \leq k}(n, F)$ for the maximum number of edges in an n-vertex graph that is k-partite and has no subgraph isomorphic to F. The function $\mathrm{ex}_{\chi \leq 2}(n, F)$ has been studied by many researchers. Finding $\operatorname{ex}_{\chi \leq 2}\left(n, K_{s, t}\right)$ is a special case of the Zarankiewicz problem. We prove an analogue of the Kövári-Sós-Turán Theorem by showing

$$
\mathrm{ex}_{\chi \leq 3}\left(n, K_{s, t}\right) \leq\left(\frac{1}{3}\right)^{1-1 / s}\left(\frac{t-1}{2}+o(1)\right)^{1 / s} n^{2-1 / s}
$$

for $2 \leq s \leq t$.
Using Sidon sets constructed by Bose and Chowla, we prove that this upper bound in asymptotically best possible in the case that $s=2$ and $t \geq 3$ is odd, i.e., $\operatorname{ex}_{\chi \leq 3}\left(n, K_{2,2 t+1}\right)=\sqrt{\frac{t}{3}} n^{3 / 2}+o\left(n^{3 / 2}\right)$ for $t \geq 1$.

This is joint work with Craig Timmons. (Received July 24, 2018)

