1141-05-40 Nimrod Kriger, Achva Academic College, Israel, and Andrew Woldar* (andrew.woldar@villanova.edu), Department of Mathematics and Statistics, Villanova, PA 19085. Automorphism groups of classical affine association schemes of Latin type. Preliminary report.

We consider the family of **complete classical affine association schemes** A_p of order p^2 and rank p + 2 where p is an odd prime. Each such scheme is known to be amorphic, meaning that every possible merging of its p + 1 classes results in a fusion scheme. We refer to such fusion schemes as **classical affine schemes**.

Let \mathcal{M} be a classical affine scheme of order p^2 . Then the automorphism group $Aut(\mathcal{M})$ contains $Aut(\mathcal{A}_p) \rtimes K$ where K is the stabilizer of \mathcal{M} in PGL(2, p). We are especially interested in the case when $Aut(\mathcal{M}) = Aut(\mathcal{A}_p) \rtimes K$. We call such schemes **standard**.

In our investigations we make strong use of a bijection between all classical affine schemes \mathcal{M} and all ordered partitions π of the point set of the projective line PG(1, p). We write $\mathcal{M} = \mathcal{M}(\pi)$.

Special attention is paid to schemes of so-called **Latin type**, i.e., schemes $\mathcal{M}(\pi)$ in which every cell of π has size at least 3. Based on exhaustive computer data for $p \leq 11$ and partial data for p = 13, we make the following:

Conjecture: Every scheme of Latin type is standard. (Received July 06, 2018)