In a ring R of characteristic $p \geq 0$, tight closure I^* of an ideal $I \subset R$, named as such because it is a tighter closure operator than integral closure, is in general difficult to compute. However, a pair of results by Hochster and Huneke make computing the tight closure of ideals in Stanley-Reisner rings relatively simple. If we let \mathfrak{m} be the maximal ideal of a Stanley-Reisner ring generated by the images of the variables of the ring, we will examine all ideals I such that $I^* = \mathfrak{m}$, specifically discussing the minimal number of generators of I, called the \ast–spread of \mathfrak{m} and the intersection of all such ideals, called the \ast–core(\mathfrak{m}). We also make special mention of the similarities between these notions and their integral closure counterparts. (Received July 31, 2018)